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I. INTRODUCTION'

The practical use of coherent optical correlators for target recognition
demands a spatial light modulator capable of displaying input images and
filters in real time. A candidate for this role is the magneto-optic spatial
light modulator manufactured by Litton and Semetex [1] . The modulator is a
partially transparent array of pixels on & semiconductor chip. Each pixel is
made of a magnetic film that exhibits Paraday rotation of polarized light.
The sense of the rotation, either to the right or to the left, depends upon
the magnetic polarity of the film, either "up" or "down". Figure 1 shows how
the magnetic state of a pixel can be viewed as a binary modulation of the
light amplitude passing through it. The polarity of each pixel can be
controlled by means of currents driven through a grid of conductors
surrounding the pixels, with the aid of an externally applied magnetic field.

The accomplishment outlined in this report is the control of a 128 x 128
pixel array light modulator by an 8085-based microcomputer programmed in the
FORTH language. Litton supplied assembler software to control the device via
a 6502 processor, but straight assewbler code is difficult to modify for the
changing needs of a laboratory situstion. The FORTH language provides this
flexibility, offers high level constructs such as DO loops, and supports
assembler sub-routines for fast operation. In the final version of the FORTH
softwvare, an image could be written to the Litton magneto-optic spatial light
modulator in 1.2 seconds at an average rate of one pixel every 73 micro-
seconds.

%Hut Polariser

Second Polariser

Figure i. Optical modulation through the magneto-optic (Faraday) effect.
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II. THE LITTON 128-03 SPATIAL LIGHT MODULATOR

The magneto-optic device used in this work was a Litton 128-03 LIGHT-MOD.
It consists of a square array of 128 x 128 pixels on 76 im centers. Each
pixel is 58 m x 58 ym. Conducting lines deposited on the chip form a grid
between the pixels. One corner of each pixel is ion implanted so as to be
especially susceptible to applied magnetic fields (see Figure 2).

In operation, currents are driven simultaneously through two orthogonal :
lines. At their intersection, they produce a sufficiently strong field to
set the polarity of the implanted corner on the nearest pixel. Then, with
the aid of an externally applied magnetic field from a coil surrounding the
chip, the magnetic domain of the new state expands to cover the whole pixel.
The polarization state of the light passing through the pixel is then changed
accordingly [2].

f The driver electronics of the light modulator serve to direct the curreat

: pulses on the chip and in the external field coil. Although some of the

X drive electronics are fabricated together with the magneto-optic chip, most

N are on an external circuit card. Although the light modulator is capable of

. switching one row or column at a time, the currently available driver can
address only one pixel at a time [3].

! A pixel is switched by sending two addresses, two timing signals, and a
‘e polarity signal to the driver board. All signal levels are TTL standard.
; Two seven-bit addresses serve to specify the X and Y coordinates of a pixel.

" A negative-going edge on line PT triggers the current pulses on the chip that

Conductors

Pixel

| oM
- Implanted
Region

' '
' . -.
. |
¥

Figure 2. Pixel structurc of the magneto-optic spatial light modulator.
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intersect at the addressed pixel. A negative-going edge on the line PC
triggers the curreat pulse through the field coil. The polarity signal on
line SPA7 determines the direction of both chip and coil currents, so as to
write or erase the pixel.

The time at which each pulse is triggered is controlled by software, but
pulse widths are set by the driver board. The duration of chip current
pulses triggered by edge PT are timed by a one~-shot to one microsecond.

. Likewise, the coil current pulse is set to last for about 0.6 millisecond. A
shorter coil pulse is not practical because of the long inductive time
constant of the coil.
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I1I. SOFTWARE CONTROL OF THE LITTON DEVICE

Control of the Litton device was achieved with a Zenith 2-100 microcom-
puter using an 8085A microprocessor. The software was developed in a dialect
of the FORTH language (4th, by United Controls Corporation) [5]. FORTH-based
languages are well-guited te device control, as they can incorporate fast
assembly-language routines into code, as well as supporting high-level
programming tools [4].

The Litton device was operated in the bias~assist mode, which means that
chip and coil currents were active simultaneously, so as to minimize power
dissipation in the chip. In the bias-assist mode, X and Y pixel addresses
must be set at the proper ports of the driver card, and then the SPA?
polarity bit, which will determine current flow direction and thus the final
state of the pixel., Coil current is then triggered by the falling edge of
PC. After allowing 225 usec for the current in the field coil to build up
against inductive delay, PT triggers the chip currents that effect the pixel
write or erase operation.

The first routine to implement the bias-assist mode was called "1D128"
(see appendix). 1D128 implements a doubly-nested 128 x 128 DO loop. The
loop counters I and J represent the pixel addresses, and are both placed on
the microprocessor stack. (FORTH uses a stack-oriented, RPN arithmetic).
The counters are also used to calculate the computer memory address that
contains the bit representing that pixel, and a bit mask to sift that one bit
out of its memory address. These values are passed on the stack to assembly
language routine 1N128, which determines the polarity of the pixel, and acti-
vates PC and SPA7 simultaneously. A delay loop is run for 225 usec
(COIL.RISE.DELAY), and then the X and Y values are output to ports that con-
nect to the driver card address lines. PT is then activated, and control
returns to 1D128 to set up the parameters for the next pixel and start again

after the coil current has decayed. A schematic of the pulse timing is shown
in Figure 3.

1D128 writes an image to the 16,384 pixels of the device in 48 seconds.
The algorithm is slow because the delay between pixels is set by the near-
millisecond time constant of the coil current and the unexpectedly high
overhead time associated with doubly-nested DO loops. A faster approach is
to erase all pixels under the cover of one long coil current pulse, then
reverse the polarity of the coil current, and write to all required pixels.
In this fashion, the delay between addressing of consecutive pixels is
limited only by the speed of the microprocessor in loading the pixels of the
bitmapped image and sending them out with proper addresses and timing
signals. The coil current can be prolonged indefinitely by repeatedly
retriggering the one-shot that shapes the pulse.

The faster algorithm for writing to the Litton device is shown in the
appendix. The word LITTON first invokes the word ERA128, which performs a
128 step DO loop, each time invoking the assembly language routine ERASEROW,
ERASEROW, in turn, sets up a coil pulse of erase polarity and triggers chip
currents to sequentially erase all the pixels in a row, while periodically
retriggering the coil current., After ERA128 is completed, the whole device
has been erased. In the same fashion, WRITEl28 repeatedly invokes WRITEROW.,
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WRITEROW has a logic similar to ERASEROW, except that the bitmap location
corresponding to each pixel must be tested to see if a PT signal is required
for a write at that spot. On each row, only the "on" pixels are writtenm to,
while the coil current is repeatedly refreshed by pulsing PC low. Pulse
timing is shown in Figure 4. A complete erase and write operation takes 1.2
seconds.

I1f one wishes to study these routines, it is helpful to know that the
pixel X address is mapped to an 8-bit port labelled X.CTL.PORT, as the Y
address is mapped to Y.CTL.PORT. A single port called either COIL.CTL.PORT
or TRIGGER.CTL.PORT maps SPA7 (the least significant or zeroth bit), PT (the
first bit), and PC (the second bit). The other five bits of the port are
unused. All assembler mnemonics are based on Intel standard, but the
operands precede the mnemonics, and FORTH conditional constructs such as
BEGIN ... ENDZ (end on zero) are used.
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IV. CONCLUSION

Figure 5 shows two images written to the Litton device using the FORTH
word LITTON, The combination erase/write operation takes 1.2 seconds. (As
is usual for this device, some pixels are switched on randomly, due to
varying magnetic susceptibility across the face of the chip). This is satis-
factory for laboratory work, but is probably near the lower limit possible
for microprocessor control of the present driver electronics. The sequential
fetching of data, calculation, and output of addresses and timing signals
takes far longer than the approximately 1 microsecond needed to switch a

‘ pixel., Increasing the writing speed to video frame rates and beyond will .
require simultaneous, parallel addressing of a whole row of pixels, perhaps

supported by some form of direct memory access that bypasses the

microprocessor. However, in lieu of such special purpose hardware, FORTH

based software will continue to provide a suitable combination of speed,

flexibility, and ease of modification for changing laboratory needs.
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Figure 5. Images displayed on the Litton magneto-optic spatial

Tight modulator.
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APPENDIX

1D128

IND128.4TH

DATAC 1 ] COIL.FALL .DELAY
DATAL 61 1 COIL.RISE.DELAY

CODE IN128 ( X#2356+Y, bitmask ,bitmapADDR--)
H POP, ( get bitmapADDR into regHL)
D POP, ( get bitmask into regE, regD unaffected)
A E MOV,
M ANA,
IFNZ A PIXEL.ON MVI, THEN
D A MOV,
PC .LEADING .EDGE ORI, TRIGGER.CTL.PORT OUT,
A D MOV,
PC.TRAILING.EDGE ORI, TRIGGER.CTL .PORT OUT,
¢ COIL.RISE.DELAY LHLD, BEGIN
L DCR, ENDZ
H POP, ( Y into regl, X into regH)
A L mMov, Y.CTL.PORT OUT,
A H MOV, X.CTL.PORT OUT,
A D MOV, ( restore SPA7 bit)
PT.LEADING.EDGE ORI, TRIGGER.CTL .PORT OUT,
A D Mav,
PT.TRAILING .EDGE ORI, TRIGGER.CTL.PORT OUT,
‘¢ COIL.FALL.DELAY LHLD, BEGIN
NOP, NOP, NOP,
L DCR, ENDZ
5

: 10128 ( display bitmap to L-128)
27 0 DO
127 0 DO
I SHL8 J OR ( leave X#2546+Y on stack)
1 8 /MOD DROP ORTABLE + B@ ( Yeave bitmask on stack)
1 J CELLADR 8 7 BITMAF + ( leave address on stack)
IN128
LOOP
LoopP

00000000B CONST PIXEL,OFF
00000001B CONST PIXEL.ON
11111100B CONST PT.LEADING.EDGE
111111108 CONST PT,TRAILING.EDGE
111110108 CONST PC,LEADING.EDGE
111111108 CONST PC.TRAILING.EDGE

PP N R e e e e e T B o B B A

¢ 10T
10T)
4T
m
107)
4T)
177
47)
177
16T)
14T)
10T
14T)
147)
4T)
177)
4T)
17T
16T)
127)
14T)




LITTON.4TH

» ERASEMAP .4TH” LOAD
" WRITEMAP.4TH" LOAD

t LITTON ERALIZ0 WRITELZS

ERABEMAP .4TH

000000008 CONST LEADING.EDGE
000001108 CONST TRAILING.EDSE

CODE ERASEROW
H B MOV, LCMIV, °° 4TH.PROGRAM.COUNTER SHLD.
B POP, ( PLACES I, THE Y-COORDINATE INTO REG C )
® 127 mvi,
A PC.LEADING .EDGE MVI, TRIGSER.CTL.PORT OUT,
A PC.TRAILING.EDGE MVI, TRIGGER.CTL.PORT OUT,
‘’ COIL.RISE.DELAY LHLD, DEGIN
L DCR, ENDZ
BEGIN

A C MOV, Y.CTL.PORTY OUT,

A B MOV, X.CTL.PORT QUT,

A LEADING.EDGE mMVI, COIL.CTL.PORT OUT,

A TRAILING.EDGE MVI, COIL.CTL.PORT OUT,

® DCR, ENDZ
‘¢ &TH.PROGRAM.COUNTER LHLD, B H MOV, C L MOV,
]

s ERALCE
127 0 DO
I
ERASEROW
Loop

10T

)
17T
17
16T)
14T)

147T)
147T)
17T
17m
147)



WRITEMAP .ATH

2 BLOCK BITMAPADDR

11111001B CONST PC.PT.LEAD
111111118 CONST TRAILING.WRITE
11111011B CONST PC.LEAD.WRITE

CODE WRITEROW

H B MOV, L C MOV, ‘’ 4TH.PROGRAM.COUNTER SHLD,

C 0 mI,

(

D POP, ( PLACES 1, THE Y-COORDINATE INTO REG E,

UNAFFECTED)
A E MOV, Y.CTL.PORT OUT,
A PC.LEAD.WRITE MVI, TRIGGER.CTL.PORT OUT,
A TRAILING.WRITE MVI, TRIGGER.CTL.PORT OUT,
** COIL.RISE.DELAY LMLD, BEBIN
L DCR, ENDZ
BEGIN
¢ BITMAPADDR LHLD,
A L MOV, 1 ADI,
L A MOV,
IFC
A H MOV, 1 ADI, H A MOV,
THEN
D H MOV, E L MOV,
‘* BITMAPADDR SHLD,
B O MVI,
BEGIN
A B MOV, O SUI,
IFZ
D LDAX,
ELSE
AL mov,
THEN
RAL ,
L A MOV,
IFC
A C MOV,
RLC, RLC, RLC,
P ADD, X.CTL.PORT OUT,
A PC.PT.LEAD MVI, TRIGBER.CTL.PORT OUT,
A TRAILING.WRITE MVI, TRIGGER.CTL.PORT OUT,
ELSE
A PC.LEAD.WRITE MVI, TRIGGER.CTL.PORT OUT,
A TRAILING.WRITE MVI, TRIGGER.CTL.PORT OUT,
THEN
B INR, A B MOV, B SUI, ENDZ
C INR, A C MOV, 16 SUI, ENDZ

*¢ 4TH.PROGRAM.COUNTER LHLD, B H MOV, C L MOV,
)

1 WRITE128
DITMAP $- BITMAPADDR !
127 0 DO
1

WRITEROW
LOooF

A-3/(A-4 blank)
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